Multi-Subject fMRI Generalization with Independent Component Representation

نویسنده

  • Rasmus E. Madsen
چکیده

Generalizability in a multi-subject fMRI study is investigated. The analysis is based on principal and independent component representations. Subsequent supervised learning and classification is carried out by canonical variates analysis and clustering methods. The generalization error is estimated by cross-validation, forming the so-called learning curves. The fMRI case story is a motor-control study, involving multiple applied static force levels. Despite the relative complexity of this case study, the classification of the ’stimulus’ shows good generalizability, measured by the test set error rate. It is shown that independent component representation leads to improvement in the classification rate, and that canonical variates analysis is needed for making generalization cross multiple subjects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Comparison of multi-subject ICA methods for analysis of fMRI data.

Spatial independent component analysis (ICA) applied to functional magnetic resonance imaging (fMRI) data identifies functionally connected networks by estimating spatially independent patterns from their linearly mixed fMRI signals. Several multi-subject ICA approaches estimating subject-specific time courses (TCs) and spatial maps (SMs) have been developed, however, there has not yet been a f...

متن کامل

Tensorial Extensions of Independent Component Analysis for Multi-Subject FMRI

We discuss model-free analysis of multi-subject or multi-session FMRI data by extending the single-session Probabilistic Independent Component Analysis model (PICA; [2]) to higher dimensions. This results in a threeway decomposition which represents the different signals and artefacts present in the data, in terms of their temporal, spatial and subject-dependent variations. The technique is der...

متن کامل

Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity

Spatial smoothing is a widely used preprocessing step in functional magnetic resonance imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we decomposed the task fMRI data into a collection of components or networks by independent component analysis (ICA). The designed task par...

متن کامل

An introduction to Multiway Methods for Multi-Subject fMRI experiment

Model free exploratory methods available for functional MRI analysis of one subject such as Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are investigated for generalisations when analysing more than one subject. Introducing the subject dimension makes a three-way data: brain, time, subject, and multiway methods are proposed either to optimise the variance (PCA) or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003